Sunday, August 26, 2012

The Bodys Secret Supporter: The Pancreas

Imagine you have a delicious dinner. You may never have wondered how you will digest those various nutrients. You are likely unaware that each of these nutrients need to be processed by different enzymes. Of course, it’s perfectly natural for anyone who has not received specialized training to be unaware of this. Yet one organ in your body does possess all this information. It knows which foodstuffs will be digested by which enzyme, and sends the right chemical secretion to these foodstuffs, at the proper time, with no confusion or stoppages ever occurring. That organ is the pancreas.

The pancreas maintains the body’s balances by working
in an exceedingly planned manner. It is aware of even the smallest
changes in the levels of substances in the blood and acts accordingly.
 It is Allah Who endows the pancreas with these features.
One of the most important organs in the body, the pancreas decides how many sugar molecules need to be present in the blood flowing through the veins. If there is a reduction in the number of sugar molecules in the bloodstream, the pancreas immediately takes steps to raise that number, and those measures save the life of the individual. If the sugar-molecule concentration rises, then it takes steps to lower their amount in the bloodstream.
With the enzymes it sends to the digestive system, the pancreas plays a major role in human health. The enzyme that prevents the intestines being digested by stomach acid is also produced by
the pancreas. If we examine these functions one by one, then we can see how this organ, which may never have drawn your attention, acts in a most planned, conscious manner and possesses a flawless system that keeps you alive.
  1. The chymus entering the duodenum 
    causes the mucus cells to secrete secretin and cholesystokinin.
  2. Cholesystokinin and secretin enter the blood.
  3. As it nears the pancreas, cholesystokinin causes 
    enzymes to release rich pancreatic fluid.
  4. The stimulation of the vagus nerve by the fibers 
    causes pancreatic fluid to be released.
The pancreas’ intervention in the digestive system begins with a special signal. As digestive processes carry on inside the stomach, specific quantities of a special enzyme known as cholesystokinin enters the bloodstream and stimulates the pancreas to secrete breaking-down enzymes into the duodenum. 38
The Hidden Chemist
The pancreas not only understands that the digestive process has begun. It can also understand the kind of foods you have eaten, and then produces different digestive enzymes accordingly. For instance, when you eat a lot of carbohydrates, such as pasta or bread, when these foods reach the duodenum, the pancreas secretes the enzyme amylase, which possesses the feature of breaking down carbohydrates.
If you eat meat, fish or chicken, when these high-protein products reach the duodenum, the pancreas produces enzymes such as trypsin, chymotrypsin, carboxypeptidase, ribonuclease and deoxyribonuclease, which then break down the protein molecules. If your meal has a high fat content, then lipase, another enzyme that digests fats, enters the duodenum together with these other enzymes.
This organ realizes the content of the food you eat, then separately produces the chemical fluids necessary to digest these foods, and secretes them only at the right time. The pancreas never secretes enzymes that break down protein for carbohydrates, or fluids that break down carbohydrates for fat molecules. It never forgets the chemical formulae of the complex enzymes it produces, or accidentally leaves out any components. In the healthy individuals bodies, the pancreas serves accurately for a whole lifetime.
For a closer look at the scale of the miracle involved, let’s examine this phenomenon at the micro level. As digestion proceeds, the stomach cells do not remain idle. Some of these cells realize that the food being digested will later reach the duodenum. Their sole concern is that this food should be digested as well as possible. By means of the bloodstream, the stomach cells signal to the pancreas cells to assist them by secreting a hormone.
The signal they deposit travels through the bloodstream and when it reaches the pancreas, the cells there immediately recognize it. Although it travels through just about the whole body, the signal is not opened and in particular, not read, by the other organs. All other cells know that this signal has been addressed to the pancreas, not to them. That is because the molecular structure of the signal has been so created to affect only the receptor molecules on the membranes of pancreatic cells. In other words, the stomach cells have written the correct “address” on the hormone it produced in a conscious, knowledgeable way. In order for that address to be written properly, the stomach cell needs to know all the features of a pancreatic cell.
The miracle is not solely restricted to the correct writing of the address. The letter sent by the stomach cell also contains a message. Two tiny cells in the depths of the human body, located far away from one another, correspond and communicate to serve a specific purpose. Though they have never seen one another, they know the language the other will understand and act together to plan for the digestion of the food you eat. No doubt this is a true miracle!
The pancreas reads the message reaching it, in the form of the hormone cholesystokinin, and loses no time in secreting the necessary enzymes. If the food reaching the duodenum is a protein, then it produces an enzyme that breaks down protein and sends this to the duodenum. If the food is heavy in carbohydrates, then it produces an enzyme that breaks down carbohydrate.
Imagine a blackboard on which are written the formulas for a protein molecule, a fat molecule and a carbohydrate molecule, together with plans of these molecules’ atomic chains. Then imagine that someone asks you to produce the chemical formulas for the best enzymes to break down each one of these three different molecular structures, and to write them down on the blackboard.
Unless you have received specialized chemical training, you could never guess the most ideal formulas that would break down these molecules. You could write down those formulas only in the light of previous training or instruction.
That being so, then how do pancreatic cells know the chemical formulas of the enzymes they produce? Each and every pancreatic cell knows these formulas from the moment it comes into being. Moreover, it constantly uses that information in the most accurate manner to serve the body as a whole. In terms of chemistry, pancreatic cells are far more knowledgeable than human beings! Humans require special training to produce these formulas, whereas a tiny cell knows them all by heart right from the start.
No coincidence can provide cells with such special information and a superior sense of responsibility. No coincidence can ever build a system by which cells can communicate with, and seek assistance from one another. No coincidence can teach a single cell even one chemical formula. No coincidence can endow the cell with the capacity to use whatever information it possesses at exactly the right time.
It is Allah, the Lord of the Worlds, Who created all these systems from nothing and placed them at the service of human beings by ensuring they work at every moment.
Another of the pancreas’ important functions is regulating the body’s blood sugar levels. The secretions that perform this function, called insulin and glucagon, are emitted by small, closed glands in the pancreas known as the islets of Langerhans. 39
As you sip tea or eat a piece of cake, your need to regulate the level of sugar in your bloodstream never occurs to you. You may never even realize how vitally important this constant regulation is. Your pancreas, however, responsible for your ongoing health in this area, possesses all the information to adjust your blood sugar levels in a particularly sensitive manner. When necessary, it secretes sufficient amounts of hormone to protect the level of sugar in your body.
It is essential for life that the amount of sugar in the blood should be within specific limits. Yet we need not calculate that sensitive balance as we eat sugary foods in our daily lives—because that calculation is performed for us.
When the level of sugar in the blood rises, the pancreas immediately becomes aware of it and secretes a special substance known as insulin, which instructs the liver and other body cells to keep hold of the excess sugar. If the level of sugar in the blood falls, then the pancreas learns of this, too and secretes the hormone glucagon. The liver then releases into the blood the sugar stocks it has previously stored by means of special processes. 40 Thanks to this, the blood level of sugar never reaches dangerous levels, except during cases of diabetes.
In your day-to-day life, you will be quite unaware of the pancreas, its insulin and your liver. You will not feel that your blood sugar level has risen. Even if blood samples with two different amounts of sugar in them are placed before you, you will be unable to tell the difference. Yet some of your cells, which you have never seen, measure the levels of sugar in your blood far more sensitively than any laboratory could, and immediately decide on the steps that need to be taken.
How did your cells come by this incomparable intellect and ability?
Of course, your cells did not give themselves the intellect and ability with which to make measurements, make decisions and put them into practice. It is Almighty Allah Who creates the cells in your body with such a flawless system, gives them the necessary commands, and makes them aware of how they must behave.
In our description so far, we have used such verbs as knows, makes, and produces. Bearing in mind that the pancreas is also composed of cells, you can immediately see that these actions require reason, and cannot be attributes of the pancreas itself. That being so, who gave the cells of the pancreas their ability to produce for an entire lifetime and endowed them with their sense of responsibility? Who taught the pancreatic cells the chemical formulas of enzymes that break down so many different complex molecules? Who provided the duct system to allow the fluids they produce to empty into the correct locations? Who established the warning and communications systems to allow the right enzymes to be released at the right time?
These questions and hundreds of similar ones lead us to one evident truth. It is Allah Who does all this. Allah reveals Himself to us with such magnificent features as these, which He has installed in such a tiny volume. This is the most important fact in anyone’s life.
ARE YOU AWARE OF THE GIANT FACTORY WORKING
IN YOUR BODY WHEN YOU EAT SUGARY FOODS?

If your food contains more sugar than your body requires, it acts to prevent the level of sugar in your bloodstream from rising:

First, cells in the pancreas locate the sugar molecules in the blood and distinguish between them from among all the hundreds of other kinds of molecules present, and decide whether these molecules are too many or too few. How minute cells, too small to be seen with the naked eye, with no sense organs or brains, can be aware of the quantity of sugar molecules inside a liquid is an imponderable question.

If the pancreatic cells determine that there is more sugar in the blood than needed, they decide that this excess sugar be stored, by other cells at a considerable distance away from them.

These distant cells will not store sugar unless commanded to do so. But, the pancreatic cells make a hormone known as insulin to carry the instruction start storing sugar. The formula for this hormone has been encoded in the DNA of the pancreatic cells ever since they were first formed.

Special enzymes (worker proteins) in the pancreatic cells read this formula and produce insulin accordingly. Hundreds of enzymes, each with a different function, are involved in its production.

The hormone insulin thus produced is carried to the target cells via the bloodstream— the most reliable and rapid transportation network.
Other cells read the “Store sugar” instruction given by the insulin and obey it to the letter opening to allow the sugar molecules to enter them.
The storage cells’ doors are not opened at random, however. They recognize, seize and enclose only sugar molecules from among the hundreds of other different molecules passing in the blood.

The cells never disobey any instruction that reaches them; neither do they misunderstand such instructions, trap the wrong substances or try to store more sugar than necessary. They work with great discipline and self-sacrifice.

Thus when you drink a cup of tea with too much sugar in it, this extraordinary system goes into operation to store the excess sugar in your tissues. If that system did not work, then your blood sugar level would rise rapidly, and you would go into a so-called diabetic coma and die.

So perfect is this system that when necessary, it can also operate in the opposite manner. If your blood sugar level falls below normal, then pancreatic cells produce an entirely different hormone, known as glucagons, which instructs to the cells that have previously stored sugar to release it into the bloodstream. The cells obey and release the sugar they have stored.

How can nervous system,devoid of a brain, and sense organs carry out such processes and activities so successfully? How can these unconscious entities, combinations of protein and fat molecules, achieve things that human chemists cannot? What is the origin of this obvious consciousness displayed by unconscious molecules?

These phenomena reveal the existence and might of Allah, Who has dominion over the universe and all living things. This dominion is revealed thus in the Qur’an:

All greatness belongs to Him in the heavens and Earth. He is the Almighty, the All-Wise.  (Surat al-Jathiyya: 37)
Say: “Who is the Lord of the heavens and the Earth?” Say: “Allah.” Say: “So why have you taken protectors apart from Him who possess no power to help or harm themselves?” Say: “Are the blind and seeing equal? Or are darkness and light the same? Or have they assigned partners to Allah who create as He creates, so that all creating seems the same to them?” Say: “Allah is the Creator of everything. He is the One, the All-Conquering.” (Surat ar-Ra‘d: 16)
Why Is the Pancreas Not Harmed by Its Own Secretions?
The pancreas secretes so many dissolving enzymes, yet does not digest itself. The pancreas, with a basically protein structure, remains unaffected by any of the dissolving enzymes it secretes. This protective system comes about in a most astonishing, miraculous way.
The pancreas first produces its enzymes in a non-active form, in which they are unable to break down proteins—and therefore, the pancreas itself.
When released into the duodenum, however, the enzymes combine with a very special substance produced only in this region of the body, and immediately begin to change. Enzymes combine with the substance known as enterokinase, produced in the small intestine, and suddenly assume active form, acquiring the ability to break down proteins.41 The way that one substance secreted in the pancreas joins together in complete harmony with another secreted in the intestines is a considerable wonder.
These two molecules have never met before, having been secreted in different regions. Yet these two independent molecules complement each other flawlessly, and serve a common purpose. This miraculous phenomenon cannot, of course, be explained in terms of chance.
What is more, the miraculous systems that prevent the pancreas from digesting itself are by no means limited to this. The pancreas secretes another protein-digesting enzyme called trypsin and at the same time, secretes another special substance known as a trypsin-inhibitor to prevent the trypsin from dissolving the pancreas. These two enzymes, have no effect when secreted together, separate from one another when they reach the duodenum. This in a way liberates the trypsin, which begins to break down the protein in the foods arriving at the intestines. 42 Were these two substances to separate earlier, it would dissolve the pancreas itself. If they never separated from one another, then the trypsin would be unable to break down proteins. However, as this example shows, everything happens at the right time and in the right place. The pancreas knows it must secrete the necessary substances at just the right time, and the enzymes go into action only after dividing from each other. Clearly the cells composing the pancreas, and the molecules that make up its enzymes, could never form such a flawless system, nor establish such perfect order within the human body of their own accord.
Anyone reasonable can see that such a system, which works with no gaps and no confusion in the order of tasks performed, and with the same flawlessness in all human beings, is the product of a superior Intellect and a flawless Creation. It is impossible to account for this system in evolutionary terms. This system is one of the manifest proofs of Allah’s creation. Allah reveals these signs in this and other such examples to those able to use their minds and who are able to see.
It is He Who appointed the Sun to give radiance, and the Moon to give light, assigning it phases so you would know the number of years and the reckoning of time. Allah did not create these things except with truth. We make the Signs clear for people who know. In the alternation of night and day and what Allah has created in the heavens and the Earth there are Signs for people who guard against evil. (Surah Yunus: 5-6)
28- John Farndon ve Angela Koo, Human Body, Factfinder, Miles Kelly Publishing Ltd., ?ngiltere, 1999, s.191 
29- Solomon, Berg, Martin, Villee, Biology, Saunders College Publishing, ABD, 1993, s.960
30- Curtis&Barnes, Invitation to Biology, s. 391 
31- Eldra Pearl Solomon, Introduction to Human Anatomy and Physiology, s.211-212 
32- Solomon, Berg, Martin, Villee, Biology, s.977 
33- Curtis&Barnes, Invitation to Biology, s.393 
34- Curtis&Barnes, Invitation to Biology, s.392 
35- Marshall Cavendish, Illustrated Human Body, s.116

36- Solomon, Berg, Martin, Villee, Biology, , s.962 

37- Arthur Guyton-John Hall, Text Book of Medical Physiology Guyton & Hall, W.B. Saunders Company, 1996, s.885 
38- Solomon, Berg, Martin, Villee, Biology, s.967 
39- Prof. Dr. Ahmet Noyan, Ya?amda ve Hekimlikte Fizyoloji, s.881-882 
40- Arthur Guyton-John Hall, Text Book of Medical Physiology Guyton & Hall, s.978 
41- Prof. Dr. Ahmet Noyan, Ya?amda ve Hekimlikte Fizyoloji, s.879 
42- Biological Science A Molecular Approach, Sixth Edition, D.C. Heath and Company, Toronto, s.412 

No comments:

Post a Comment